$\langle Quantum | Gravity \rangle$ Society

Observation of a Gravitational Aharonov-Bohm Effect

& Implications for quantum superpositions of Newtonian gravitational fields

Mark Kasevich

Observation of a gravitational Aharonov-Bohm effect

and

Implications for quantum superpositions of Newtonian gravitational fields

Young's double slit exp't with particles

Atomic wavepacket superposition

Kovachy, et al., Nature (2015).

Interference at output ports

STANFORD UNIVERSITY

T. Kovachy, et al., Nature (2015)

An interferometer for 87Rb based on pulses of light

Apparatus

Phase shifts between interfering waves

g, acceleration due to gravity

- *T*, time wavepackets are separated
- k_{eff} , propagation vector of laser

STANFORD UNIVERSITY

Overstreet, et al., PRL 2020

Data

The differential accelerations of 85Rb and 87Rb are inferred by comparing phase shifts for atom interferometers.

Equivalence Principle Test Results

 $\eta = [1.6 \pm 1.8(\text{stat}) \pm 3.4(\text{syst})] \times 10^{-12}$

Doromotor	Shift	Uncertainty
I al allietel	SIIIt	Uncertainty
Total kinematic	1.5	2.0
Δz		1.0
Δv_z	1.5	0.7
Δx		0.04
Δv_x		0.04
Δy		0.2
Δv_{v}		0.2
Width		1.6
ac-Stark shift		2.7
Magnetic gradient	-5.9	0.5
Pulse timing		0.04
Blackbody radiation		0.01
Total systematic	-4.4	3.4
Statistical		1.8

Atom interferometer vs. classical measurements

In both cases, interferometer phase shift is well described by the classical mid-point trajectory associated with the interferometer arms:

$$\phi_{\rm MP} \equiv \sum_{i=1}^{N} \left[(k_{1,i} - k_{2,i}) \ \bar{x}_i - (\omega_{1,i} - \omega_{2,i}) \ t_i + (\phi_{1,i} - \phi_{2,i}) \right].$$

(k_i and x_i are propagation vectors and wavepacket positions at the *i*th pulse.)

These atom interferometric measurements are conceptually similar to classical measurements. Phase shift is given by the force acting on atomic wavepackets.

> Antoine and Borde, JOSA B, 2013. Overstreet, et al., AJP, 2021.

Mass dependent phase shifts

For higher order curvature, the midpoint theorem no longer holds and the phase shift is mass dependent.

Can be interpreted as a gravitational Aharonov-Bohm effect.

Systematic for future EP measurements based on atom interferometry.

Gravitational AB Experiment

Wavepacket separation greater than distance of nearest wavepacket to source mass

Overstreet, et al., 2022

Prior proposals: Audretsch and Lammerzhal, 1983 Hohensee, et al., 2012

Interferometer trajectories in freely falling frame

Electric Aharonov-Bohm Effect

$$\psi = \psi_1^0 e^{-iS_1/\hbar} + \psi_2^0 e^{-iS_2/\hbar}$$

$$S_1 = e \int \varphi_1 dt, \quad S_2 = e \int \varphi_2 dt.$$

(negligible contribution to phase shift from forces on wavepackets)

Aharonov and Bohm, Phys. Rev. 1959

Phase shift due to gravitational action

STANFORD UNIVERSITY

Overstreet, Science, 2022

Deflection-induced phase shifts

Newtonian gravitational field energy

Field energy:

$$E_{
m G}=-rac{1}{8\pi G}\int |{f g}|^2 dV$$

$$\boldsymbol{g} = \boldsymbol{g}_{atom} + \boldsymbol{g}_{tungsten}$$

Phase shift:

$$\phi = rac{1}{\hbar} \int (E_1 - E_2) \, dt$$

 E_1 , E_2 are gravitational energies for each arm.

 g_{atom} is in spatial superposition since the atom is in a spatial superposition.

Phase shift can be interpreted as resulting from superposition of the atom's gravitational fields

Collela, Overhauser and Werner (1975)

Uniform gravitational field implies gravitational action phase shift is zero (uniform gravitational fields are not observable)

Physical original of phase shift: relative (kinematic) displacement of Si crystal with respect to de Broglie waves due to non-gravitational forces.*

*textbook treatments use perturbation theory, which masks the physical origin of the phase shift.

Exp't to test semiclassical theories

Change population ratio in interferometer arms.

Observe no statistically significant change in phase shift due to tungsten.

Overstreet, in preparation

Satellite geodesy

Prototype for 1e-5 E/H^{1/2} space-based sensor

Earth's gravitational anomaly map Image credit: S. Luthke, NASA GSFC

Gravitationally induced entanglement

Interferometer outputs are entangled by the Newtonian interaction

? What additional constraints are placed on (quantum) gravitational fields by this class of experiments

Marletto and Vedral, 2017

Thanks

Peter Asenbaum Chris Overstreet Joe Curti Minjeong Kim

Jason Hogan (Stanford) Tim Kovachy (Northwestern) Remy Notermans (Atom Computing)

$\langle Quantum | Gravity \rangle$ Society