$\langle Quantum | Gravity \rangle Society$

Low Energy Signatures of a Correlated Worldline Theory of Quantum Gravity

Jordan Wilson-Gerow

CWL Formalism

Low energy signatures of a Correlated Worldline theory of quantum gravity

Jordan Wilson-Gerow

Walter Burke Institute, Caltech Aug. 18, 2022

Quantum Mechanics & Gravity (*Quantum*|*Gravity*)society, Vancouver

* J.W.-G., Y. Chen, P.C.E. Stamp, 2208.xxxx * J. W.-G., P.C.E. Stamp, PRD **105** 084015

* A.O. Barvinsky, J. W.-G., P.C.E. Stamp, PRD 103 064028

CWL Formalism

Outline

Formalism of the correlated wordline theory

Possible experimental signatures of CWL

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Correlated WorldLine (CWL) Quantum+Gravity theory

Goals:

- Maintain general covariance
- No "external noise"
- Ultimately, abandon projection postulate for measurements (describe dynamically)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Correlated WorldLine (CWL) Quantum+Gravity theory

Goals:

- Maintain general covariance
- No "external noise"
- Ultimately, abandon projection postulate for measurements (describe dynamically)

In conventional QM, every path is independent, $K(B, A) = \sum_{\text{paths}} e^{iS[q]}$

Correlated WorldLine (CWL) Quantum+Gravity theory

Goals:

- Maintain general covariance
- No "external noise"
- Ultimately, abandon projection postulate for measurements (describe dynamically)

Central postulate: Quantum paths **of a single system** have mutual gravitational interactions (<u>correlations</u>).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

2 Formalism of the correlated wordline theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CWL Theory Construction

Path-integral evolution in CWL theory:

$$\mathcal{K} = \lim_{N \to \infty} \left[\int \mathcal{D}g \ e^{NiS_G[g]} \prod_{j=1}^N \int \mathcal{D}\phi_j e^{iS[\phi_j,g]} \right]^{1/N}$$

Infinite number of paths in conventional path-integral \implies CWL is intrinsically a "large N" theory

Effectively a theory with N fields and $N \to \infty$ with GN held constant = G_{Newton}

- Tomboulis '77, '80, Hartle-Horowitz '81, Kay '81, Smolin '81

Aside: Field theory - Generating Functional

CWL as a prescription for computing correlation functions:

$$\mathcal{Z}[J] = \lim_{N \to \infty} \left[\int \mathcal{D}g \, e^{NiS_G[g]} \prod_{j=1}^N \int \mathcal{D}\phi_j e^{iS[\phi_j,g] + i \int J\phi_j} \right]^{1/N}$$

*Only keep diagrams whose connected parts scale as N^1 . No graviton loops!

Aside: Field theory - Correlation Functions

Using intrinsic large-N limit one can prove no graviton loops to all orders in G. [Tomboulis, Smolin]

eg. exact scalar 4-pt function: Renormalizable if we add $\Delta \mathcal{L} = \alpha^{-1} (C_{\mu\nu\alpha\beta})^2$ *Asymptotically free, $\alpha \to 0$ at high-energies

*Higher n-point functions are also modified only by these scalar loops

Exact expression for CWL propagator

Large N allows us to formally evaluate gravitational integral:

$$\mathcal{K}=e^{i\mathcal{S}_{G}[ar{g}]}\,\int_{\Phi_{1}}^{\Phi_{2}}\mathcal{D}\phi\,e^{i\mathcal{S}[\phi,ar{g}]}$$

• Metric \bar{g} self-consistently satisfies an <u>in-out</u> semi-classical Einstein equation

$$\mathcal{G}_{\mu
u}(ar{g})=8\pi Grac{\langle \Phi_2|\hat{T}_{\mu
u}[ar{g}]|\Phi_1
angle}{\langle \Phi_2|\Phi_1
angle}$$

• This is **not** typical semi-classical gravity $G_{\mu\nu} = 8\pi G \langle \hat{T}_{\mu\nu} \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In-Out vs. In-In Semiclassical equation

Standard Semiclassical (In-In):

- Matter state $|\Psi\rangle$ sources gravity via $G_{\mu\nu} = \langle \Psi | \hat{T}_{\mu\nu} | \Psi \rangle$
- Measure λ , the state jumps $|\Psi
 angle
 ightarrow |\lambda
 angle$
- Discontinuous, non-local change in $G_{\mu
 u}$

In-Out Semiclassical:

• Measurement of λ at time t instead gives

$$\mathcal{G}_{\mu
u}(ar{g}(x))=8\pi Grac{\langle\Phi_2|\mathcal{T}igg\{|\lambda(t)
angle\langle\lambda(t)|\,\hat{T}_{\mu
u}(x)igg\}|\Phi_1
angle}{\langle\Phi_2|\lambda(t)
angle\langle\lambda(t)|\Phi_1
angle}$$

• Stress tensor is not discontinuous (in simple example)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

Formalism of the correlated wordline theory

Ossible experimental signatures of CWL

Observable Consequences: Estimate of Scale

Two paths for a non-relativistic **point-like** particle of mass M_0 ,

Gravitational Bohr radius and Gravitational Rydberg energy:

$$a_G(M_0) = \left(\frac{m_P}{M_0}\right)^3 \ell_P, \qquad \qquad \mathcal{E}_G(M_0) = \left(\frac{M_0}{m_P}\right)^5 E_P$$

Examples:

- Virus: $M_0 \sim 10^{-17} \, {\rm kg} \sim 10^9 \, {\rm AMU}, \qquad {\cal E}_G \sim 10^{-19} \, {\rm eV}$
- Bacterium: $M_0 \sim 10^{-14} \, \mathrm{kg} \sim 10^{13} \, \mathrm{AMU}, \qquad \mathcal{E}_G \sim 1 \, \mathrm{eV}$
- Planck scale: $M_0 \sim 10^{-8}\,{
 m kg} \sim 10^{19}\,{
 m AMU}, \qquad {\cal E}_G \sim 10^{28}\,{
 m eV}$

To reach energies $\mathcal{E}_G \sim (0.1 \,\mathrm{nK}) k_B$, need $M_0 \sim 10^{11} \,\mathrm{AMU}$ * but $a_G(M_0 \sim 10^{11} \,\mathrm{AMU}) \sim 10^{-11} \,\mathrm{m}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Extended body - Effective CWL interaction

Average over internal atomic motion \rightarrow effective C.o.M potential

Characteristic frequencies:

$$f_{wide}^{
m SiO_2} \propto \sqrt{G
ho_{avg}}, \quad f_{spike}^{
m SiO_2} \propto \sqrt{\frac{Gm}{\sigma^3}} \approx 25 \, {
m mHz}$$

cf:

- \bullet optically trapped nanoparticles $(80-300)\,\rm kHz$
- LIGO (10¹ 10⁴) Hz
- \bullet Torsion pendulum $\sim 1\,\mathrm{mHz}$

CWL Formalism

Testing CWL

Refined mass scale estimate

Position uncertainty

$$(\Delta x)^2 = \frac{\hbar}{2M\omega}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strongest effect inside the spike: $\Delta x \sim 10^{-12} \,\mathrm{m}$.

 $M \ge \epsilon \times (5 \times 10^{-11} \text{ kg}) = \epsilon \times (3 \times 10^{16} \text{ AMU})$

• At least micron scale quantum objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phenomenology: No easy signatures

Linear measurements on gaussian states show no signature.

A wavefunction

$$\psi_{\tilde{x},\tilde{\rho}}(x) = \exp\left(-\frac{1}{4}(x-\tilde{x})^2 - i\tilde{\rho}x\right)$$

maps to multi-"particle" wavefunction

$$\Psi_f(\{x_j\}) = \prod_{j=1}^N \psi_{\bar{x},\bar{p}}(x_j) = \exp\left(-\frac{N}{4}(Q-\tilde{x})^2 - iN\tilde{p}Q\right)\exp\left(-\frac{1}{4}\sum_{j=1}^N \delta_j^2\right)$$

with $\delta_j \equiv Q - x_j$.

- Non-relativistic CWL interaction is the mutual Newton potential (depends only on the δ_j)
- S_0 quadratic $\implies Q$ and δ_j decouple
- In the final amplitude, \tilde{x}, \tilde{p} dependence factors from CWL contributions

Observable Consequences: Gravity Mediated Entanglement

Bose et al., Marletto & Vedral, Carney, Müller & Taylor, Wald, Aspelmeyer,... Idea: If gravity is *quantum* then it can entangle massive objects*

Initial product: $|\psi\rangle = \frac{1}{2}(|L\rangle_1 + |R\rangle_1)(|L\rangle_2 + |R\rangle_2)$

Evolve \rightarrow entangled:

$$ert \psi
angle = rac{e^{i\phi_s}}{2} (ert L
angle_1 ert L
angle_2 + ert R
angle_1 ert R
angle_2)
onumber \ + rac{e^{i\phi_l}}{2} (ert R
angle_1 ert L
angle_2 + ert L
angle_1 ert R
angle_2)$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

-

Observable Consequences: Gravity Mediated Entanglement

Bose et al., Marletto & Vedral, Carney, Müller & Taylor, Wald, Aspelmeyer,... Idea: If gravity is *quantum* then it can entangle massive objects*

Initial product: $|\psi\rangle = \frac{1}{2}(|L\rangle_1 + |R\rangle_1)(|L\rangle_2 + |R\rangle_2)$

Evolve \rightarrow entangled:

$$ert \psi
angle = rac{e^{i\phi_s}}{2} (ert L
angle_1 ert L
angle_2 + ert R
angle_1 ert R
angle_2)
onumber \ + rac{e^{i\phi_l}}{2} (ert R
angle_1 ert L
angle_2 + ert L
angle_1 ert R
angle_2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CWL predicts zero entanglement between particles

Pulsed cavity quantum optomechanics

Radiation pressure: $\omega_{cav}(x) \approx \omega_{cav} - g_0(b + b^{\dagger})$ Strong laser pulse: $\hat{a} \rightarrow \alpha(t) + \hat{a}$

Tunable interaction: $H_{int}^{lin} = -g_0(a + a^{\dagger})\alpha(t)(b + b^{\dagger})$

- Blue detuning: $\omega_{pump} = \omega_m + \omega_{cav}$ co
- Red detuning: $\omega_{pump} + \omega_m = \omega_{cav}$

couples $a^{\dagger}b^{\dagger} + h.c.$ couples $a^{\dagger}b + h.c.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pulsed cavity quantum optomechanics

Radiation pressure: $\omega_{cav}(x) \approx \omega_{cav} - g_0(b + b^{\dagger})$ Strong laser pulse: $\hat{a} \rightarrow \alpha(t) + \hat{a}$

Tunable interaction: $H_{int}^{lin}=-g_0(a+a^\dagger)lpha(t)(b+b^\dagger)$

- Blue detuning: $\omega_{pump} = \omega_m + \omega_{cav}$
- Red detuning: $\omega_{pump} + \omega_m = \omega_{cav}$

couples $a^{\dagger}b^{\dagger} + h.c.$ couples $a^{\dagger}b + h.c.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

The Correlated Worldline (CWL) quantum+gravity theory is:

- ${\ \, \bullet \ \, }$ conventional quantum theory when $G \rightarrow 0$
- $\bullet~$ classical GR when $\hbar \to 0$
- a type of in-out semiclassical theory
- It features:
 - interesting connection with asymptotic safety
 - ullet no signatures in pprox "classical" quantum states

Proposed tests:

- Low frequency "Macroscopic" quantum optomechanical expts.
- Gravitational entanglement generation experiments

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

The Correlated Worldline (CWL) quantum+gravity theory is:

- ${\ensuremath{\, \circ }}$ conventional quantum theory when $G\to 0$
- classical GR when $\hbar \to 0$
- a type of in-out semiclassical theory
- It features:
 - interesting connection with asymptotic safety
 - $\bullet\,$ no signatures in $\approx\,$ "classical" quantum states

Proposed tests:

- Low frequency "Macroscopic" quantum optomechanical expts.
- Gravitational entanglement generation experiments

Thank you.

(Quantum|Gravity)Society