$\langle Quantum | Gravity \rangle Society$

From Discrete Causal Sets to a Spacetime Continuum

Steven Carlip

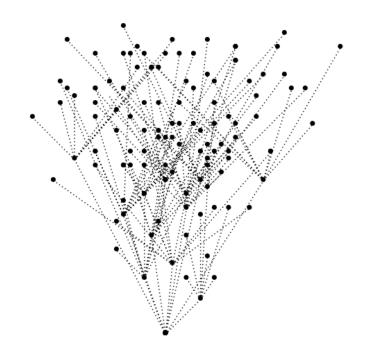
From discrete causal sets to a spacetime continuum

Steven Carlip U.C. Davis

> Quantum Mechanics & Gravity Vancouver, Canada August 2022

Causal Sets

What do you keep when you make spacetime discrete? One choice: (relativistic) time, i.e., causal relations $p \prec q$



Causal set:

- partial order \Rightarrow causal order
- no closed timelike curves: no x,y for which $x\prec y$ and $y\prec x$
- discrete: for any $x,y,\{z|x\prec z\prec y\}$ is finite

Basic ingredient: causal diamond/Alexandrov interval/order interval: For x, y with $x \prec y$,

$$I(x,y) = \{z | x \prec z \prec y\}$$

Why?

Hawking, King, McCarthy; Malament:

For a spacetime, causal structure + volume element determines geometry

Causal sets are simplest discrete embodiment

- causal structure: built in
- volume element: number of points

"Order + Number = Geometry"

But how well do causal sets approximate the continuum?

Two questions:

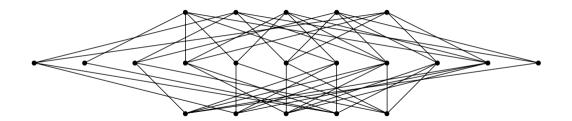
- start with spacetime manifold, approximate by causal set
- start with causal set, find suitable "smoothed" spacetime

First direction is in good shape:

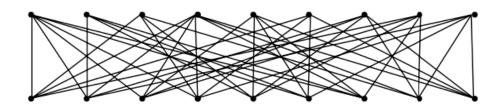
- "Poisson sprinkling" of points approximates manifold
- Can reconstruct topology, volume, curvature, d'Alembertian, etc.
- Open questions about defining "close" sets
- Locality can be tricky

But...

most causal sets are nothing at all like manifolds



KR order



2-layer set

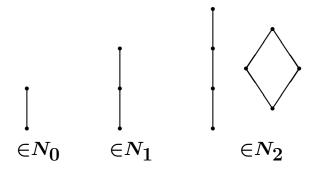
• Almost all causal sets are Kleitman-Rothschild orders

 $\frac{\text{\# of KR orders with }n \text{ elements}}{\text{\# of causal sets with }n \text{ elements}} = 1 + \mathcal{O}\left(\frac{1}{n}\right)$

- Almost all remaining causal sets are two-layer sets
- Then four-layer, five-layer, ...
- Manifoldlike causal sets are of measure zero

Causal set path integral

How to make invariants from a causal set: count causal diamonds Invariant $N_J(C)$: number of (open) intervals in set C with exactly J points



For continuum spacetime, causal diamond volumes depend on curvature

Benincasa-Dowker action:

$$rac{1}{\hbar} I_{BD}(C) = \left(rac{\ell}{\ell_p}
ight)^2 (n-N_0+9N_1-16N_2+8N_3)$$

For manifold-like causal set, I_{BD} approximates Einstein-Hilbert action

Choose class Ω of causal sets

Path sum:

$$\mathcal{Z}(\Omega) = \sum_{C \in \Omega} \exp \left\{ rac{i}{\hbar} I_{ extsf{BD}}(C)
ight\}$$

• Result 1 (S. Carlip and S. P. Loomis): For 2-layer sets, $\mathcal{Z} \sim 2^{-cn^2}$ for a large range of coupling constants

Sketch of proof:

- for two layers, only $N_0
 eq 0$, so $I_{ extsf{BD}} \sim (n-N_0)$
- maximum number of links is $N_{max} = rac{n^2}{4}$
- write $N_0 = p N_{\it max}$

$$\Rightarrow \mathcal{Z} \sim \sum_{p} \mu_n(p) e^{-i\beta p n^2}$$

- use combinatorial arguments to bound measure $\mu_n(p)$
- approximate sum as integral, use steepest descent (carefully!)

- Result 2 (A. Mathur, A. A. Singh, and S. Surya):
 - For a very large class of layered causal sets, same suppression *but* with "link action": $I_{\textit{link}} \sim (n N_0)$

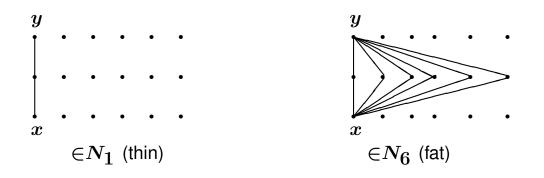
Reminder:
$$I_{BD} \sim n - N_0 + 9N_1 - 16N_2 + 8N_3$$

 $I_{link} \sim n - N_0 + 9N_1 - 16N_2 + 8N_3$

Proof: same as before, but more complicated combinatorics for $\mu_n(p)$

Result 3 (P. Carlip, S. Carlip, and S. Surya):
 For KR orders, *I*_{link} is almost always equal to *I*_{BD}

Basic argument:



For large KR order, "thin" causal diamonds are rare $\Rightarrow N_J \sim n$ is subdominant in action

Result 4 (P. Carlip, S. Carlip, and S. Surya, in progress):
 Same is almost certainly true for almost all layered causal sets

Path integral suppresses

- a very large class of "bad" causal sets
- but not manifoldlike causal sets!

Some remaining problems:

- There are almost certainly other "bad" causal sets Can they be classified, and are they suppressed?
- How does one give a general characterization of "manifold-like" sets?
- B-D action was derived from manifold Einstein-Hilbert action Can it be obtained from first principles?

$\langle Quantum | Gravity \rangle$ Society